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Potential flows of incompressible fluids admit a pressure (Bernoulli) equation when the 
divergence of the stress is a gradient as in inviscid fluids, viscous fluids, linear 
viscoelastic fluids and second-order fluids. We show that in potential flow without 
boundary layers the equation balancing drag and acceleration is the same for all these 
fluids, independent of the viscosity or any viscoelastic parameter, and that the drag is 
zero when the flow is steady. But, if the potential flow is viewed as an approximation 
to the actual flow field, the unsteady drag on bubbles in a viscous (and possibly in a 
viscoelastic) fluid may be approximated by evaluating the dissipation integral of the 
approximating potential flow because the neglected dissipation in the vorticity layer at 
the traction-free boundary of the bubble gets smaller as the Reynolds number is 
increased. Using the potential flow approximation, the actual drag D on a spherical gas 
bubble of radius a rising with velocity U(t)  in a linear viscoelastic liquid of density p and 
shear modules G(s) is estimated to be 

D = $7ca3pU+ 12na G(t-7) U(7)d7 i, 
and, in a second-order fluid, 

D = na($a2p+ 1 2 4  U +  12nupu, 

where a, < 0 is the coefficient of the first normal stress and p is the viscosity of the fluid. 
Because a1 is negative, we see from this formula that the unsteady normal stresses 
oppose inertia; that is, oppose the acceleration reaction. When U(t)  is slowly varying, 
the two formulae coincide. For steady flow, we obtain the approximate drag 
D = 127capU for both viscous and viscoelastic fluids. In the case where the dynamic 
contribution of the interior flow of the bubble cannot be ignored as in the case of liquid 
bubbles, the dissipation method gives an estimation of the rate of total kinetic energy 
of the flows instead of the drag. When the dynamic effect of the interior flow is 
negligible but the density is important, this formula for the rate of total kinetic energy 
leads to D = (pa - p) V, g - ex - pa V, U where pa is the density of the fluid (or air) inside 
the bubble and V, is the volume of the bubble. 

Classical theorems of vorticity for potential flow of ideal fluids hold equally for 
second-order fluid. The drag and lift on two-dimensional bodies of arbitrary cross- 
section in a potential flow of second-order and linear viscoelastic fluids are the same 
as in potential flow of an inviscid fluid but the moment M in a linear viscoelastic fluid 
is given by 

M =  M I + 2 ~ ~ [ G ( r - 7 ) r ( 7 ) ] d 7 ,  

where M I  is the inviscid moment and r ( t )  is the circulation, and 

M = M~ + 2 p r +  2a, a r la t  
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in a second-order fluid. When r(t) is slowly varying, the two formulae for M coincide. 
For steady flow, they reduce to 

which is also the expression for M in both steady and unsteady potential flow of a 
viscous fluid. Moreover, when there is no stream, this moment reduces to the actual 
moment M = 2pT on a rotating rod. 

Potential flows of models of a viscoelastic fluid like Maxwell’s are studied. These 
models do not admit potential flows unless the curl of the divergence of the extra stress 
vanishes. This leads to an over-determined system of equations for the components of 
the stress. Special potential flow solutions like uniform flow and simple extension 
satisfy these extra conditions automatically but other special solutions like the 
potential vortex can satisfy the equations for some models and not for others. 

M = M~ + 2pr, 

1. Introduction 
Potential flows arise from the kinematic assumption that the curl of the velocity 

vanishes identically in some region of space, o = V x u = 0. In this case, the velocity is 
given by the gradient of a potential, u = V$. If, in addition, the material is 
incompressible, then V - u = 0 and Vz$ = 0. None of this depends on the constitutive 
equation of the fluid. In fact most constitutive equations are not compatible with the 
assumption that V x u = 0, in general. For example, if the viscosity p of a Newtonian 
fluid varies from point to point, then 

def 

def def 
where A = L + LT and L = Vu, p is the density which only depends on time and, p is 
a to-be-determined scalar field called the pressure. All the terms except the last vanish 
when u = V$. This term amounts to a ‘torque’ which generates vorticity. Most 
constitutive equations will generate vorticity because the curl of the divergence of the 
stress produces such a torque. 

There are special irrotational motions which satisfy the equations of motion even for 
fluids that will not generally accommodate potential flows. For example, since the 
stress must be Galilean invariant, uniform motion is a potential flow which satisfies the 
equations of motion independent of the constitutive equation. Another such potential 
flow, greatly loved by rheologists, is pure extensional or elongational flow which leads 
to the concept of extensional viscosity. 

In general, potential flows will not satisfy the boundary conditions at solid walls or 
free surfaces. This is why potential flows are almost impossible to achieve exactly in 
practice. In particular, this feature is probably at the bottom of the apparent 
disagreement of the different instruments which claim to measure extensional viscosity. 
None of them achieve the irrotational flows necessary for backing out the rheology. 
However, we know how to use potential flows in viscous fluid mechanics, where we 
were instructed by Prandtl. Perhaps we may also learn how to use potential flow to 
study the fluid dynamics of viscoelastic liquids. 

There are some special constitutive equations which are compatible with the 
assumption that V x u = 0, in general. Among these are inviscid fluids, viscous fluids 
with constant viscosity (Joseph, Liao & Hu 1993), second-order fluids (Joseph 1992) 
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and linear viscoelastic fluids which perturb rest or uniform flow (cf. $5) .  The second- 
order fluid arises asymptotically from the class of simple fluids by the slowing of 
histories, which Coleman & No11 (1960) called a retardation. The retardation can be 
said to arise on slow and slowly varying motions, where slow variations mean that 
spatial gradients are small when the velocity is small and time derivatives of order n 
scale with Iuln. In viscous fluid mechanics we generally associate potential flows with 
high Reynolds numbers, i.e. fast flows. The constitutive equation (5.5) for a linear 
viscoelastic liquid is the appropriate asymptotic form for simple fluids in motions that 
perturb uniform flows which need not be slow. We should show that second-order 
fluids also arise as perturbations of fast uniform flows when the perturbations are 
slowly varying (cf. (5.8) and (5.9)). We have worked out the consequences of the 
second-order theory in a mathematically rigorous way without considering the domain 
of deformations in which second-order fluids are valid (see the Appendix). In fact this 
theory should not be expected to give good results for rapidly varying flows or in other 
motions outside of its domain of applicability. More general models of a viscoelastic 
fluid can support special irrotational flows even if they do not have a pressure function 
in general. Such special solutions can be found; some are universal and others work for 
some models and not for others. The conclusion that viscoelastic liquids will not admit 
potential flows is too sweeping, but outside the class of deformations that give rise to 
second-order or linear viscoelastic fluids the chances that a special potential flow can 
be achieved are slight. 

In $2 of the paper we motivate our subsequent work by calling attention to the fact 
that potential flows of viscous and viscoelastic fluids may not be realizable; non- 
existence is not exceptional. Potential motions of fluids for which the divergence of the 
extra stress is not a gradient are not possible. In $ 3  we derive an equation for the 
evolution of the energy of a fluid in which the dissipation is an important term. We 
introduce the drag on a body in rectilinear motion into this equation and show first 
that the drag on a body in potential flow is independent of the constitutive equation 
and vanishes when the flow is steady (d’Alembert’s paradox). In $4 we use Levich’s 
idea that potential flows are a good approximation to viscous (or viscoelastic) flow 
outside the vorticity layer at the surface of a gas bubble. The idea here is that unlike 
boundary layers on solid boundaries, the layer here is weaker in the sense that its 
contribution to the total rate of energy dissipation is small or even negligible at 
moderate and high Reynolds number. In this case, we get drag equations by evaluating 
the rate of energy dissipation on a potential flow; we get the drag on the bubble using 
potential flow to approximate the motion outside the bubble. In $ 5  we derive the drag 
equation on a spherical gas bubble in a second-order fluid and a linear viscoelastic fluid 
using the dissipation equation in the aforementioned approximation. In the $9 6 and 7 
we return to exact rather than approximate descriptions of potential flows of viscous, 
second-order, and linear viscoelastic fluids, but now restricted to two dimensions. Drag 
and lift are the same in inviscid potential flow, but new formulae for the moments, 
which do depend on the constitutive equation appear. In $8 we examine the general 
problem of admissibility by looking for special potential flow solutions of models like 
Maxwell’s. In the Appendix, which follows the discussion of our result in $9, we derive 
certain classical formulae for a second-order fluid. 
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2. Compatibility condition for potential flows 
A necessary condition for a constitutive equation to support a potential flow 

solution can be derived from the momentum equation as follows. We might write the 
momentum equation in the form: 

du 0.s  = pdt-pg+vp 

where S is the extra stress given by the constitutive equation of the fluid. If the velocity 
field has a potential 4, then the right-hand side of (2.1) can be written as 

provided that the body force field is conservative. Therefore, if the momentum equation 
holds for this potential flow, we must have 

v A ( 0 . s )  = 0. (2.3) 

That is, there exists a real function $(#) such that 

v . s  = V $ ,  

In this case, a generalized pressure (Bernoulli) equation can be obtained from (2.2) and 
(2.4), which is 

a4 lV4l2 P = pg-x-p--p-+++C(t), at 2 

where C(t) is a time-dependent Bernoulli constant. Obviously (2.4) holds for Newtonian 
fluids of constant viscosity with $ = 0;  it also holds for linear visco$astic fluid: with 
$ = 0 (see (5.6)); and less trivially for second-order fluids with + = :By2, where /i’ is the 
climbing constant and y2 = tr (A2) (see Joseph 1992). For models like Jeffreys’, 
S = S,+S,, where S, = pA[u], (2.4) need only be checked for S,. Generally, (2.4) 
and the constitutive equations lead to an over-determined system of differential 
equations for the components of S. Special solutions of this over-determined system 
can be found even for models that do not admit potential flow generally (see $8). 

3. Dissipation formula for the drag on a body 
The stress in an incompressible liquid can be written as 

T = - p I + S  

where p is a to-be-determined scalar field and S is the part of the stress which is related 
to the deformation by a constitutive equation. We are going to write S = S[u], 
meaning S is functional of the history of u. The formulae relating drag and dissipation 
do not require that we choose a constitutive equation. 

Consider the motion of a solid body or bubble in a liquid in three dimensions. 
Suppose that the body B moves forward with a velocity Ue, and that it neither rotates 
nor changes shape or volume. The absolute velocity u and the relative velocity v of the 
fluid are then related by 

u = Ue,+v ( 3 4  

with v-nlas = 0, (3.3) 
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where n is the inward normal on the boundary aB of B. The fluid outside B is 
unbounded. We assume that the flow is irrotational far from the body. Since the volume 
V of the fluid outside B is a material volume (because no mass crosses aB), we apply 
the Reynolds transport theorem to the kinetic energy E of the fluid in V to obtain 

(3.4) 

where the integrals converge because u = O(r-3) as r - t  co in irrotational flow (see 
Batchelor, 1967 p. 122). For the types of constitutive equations to be considered in this 
paper, it can be shown that, as r - t  co, T = O(rP2).  Therefore, using V - u  = 0 and 
pduldt = V -  T+pg, we obtain 

where T - n  is the negative of the traction vector expressing the force exerted by the fluid 
on the body and x is the position vector. We may rewrite this, using (3.2) and (3.3), as 

d E  

-= dt (3.5) 

def 
where D = ~~,ex.(T.n)dS-pV,g.ex (3.6) 

is the drag exerted on the fluid by the body and V, is the volume of the body. 
For potential flows, using (2.4), we obtain 

v-T.ndS = v.S[u].ndS = V-(u.S[u])dV I, I, JV,,, 

= s,,,, u.O$ dV+ Jv,,, L[u] : S[U] d V = I,,, L[u] :S[U] dV. 

The first and last equalities hold because u.n12, = 0 and V - u  = 0. Therefore (3.5) gives 
rise to 

1 d E  D=-- 
U dt (3.7) 

In a potential flow of the type under consideration, one has (see Batchelor 1967, p. 403) 

where e is a constant depending only on the shape of the body. For spheres, it can be 
shown that e = i. Applying (3.8) to (3.7), we get 

E = +epVB U 2 ,  (3.8) 

d U  D = epVB-. 
dt (3.9) 

This equation shows that the drag on a body in a potential flow is independent of the 
constitutive equations of liquids satisfying (2.4) and vanishes when the flow is steady 
(d’Alembert’s paradox). 

On the other hand, there are two standard situations. neither of which holds in 
potential flow, in which 

u.(T.n)(,,  = 0. (3.10) 
If B is a rigid solid, then vIaB = 0 and hence (3.10). If B is a bubble, the tangential 
component of the traction vector vanishes, i.e. 

z-(T.n)l,, = 0 for all z l n .  (3.11) 
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Since v l n  by (3.3), we obtain (3.10). Thus, applying (3.10) to (3.5), we obtain the 
dissipation formula for the drag: 

When the flow is steady, this equation becomes 

(3.12) 

(3.13) 

In general, potential flow fails to satisfy (3.10) or (3.11) and therefore (3.12) and (3.13). 
However, many flows are approximately irrotational outside thin vorticity layers, so 
that (3.13) might be used to obtain approximate values of the drag. In fact, Levich 
(1949) used (3.13) and u = Vcj to approximate the drag in the steady ascent of a bubble 
in a viscous fluid, obtaining good agreement with experiments. Unfortunately, we 
notice that in the case of two-dimensional flow with non-zero circulation on the body 
the kinetic energy is infinite (see Batchelor 1967, p. 404); therefore, (3.4) is no longer 
true and the above analysis fail. To find the drag of a body in two-dimensional 
potential flow, we thus turn to the generalized Blasius formulae described in 97. 

4. Potential flow approximations for the terminal velocity of rising bubbles 
The idea that viscous forces in regions of potential flow may actually dominate the 

dissipation of energy seems to have been first advanced by Lamb (1924) who showed that 
in some cases of wave motion the rate of dissipation can be calculated with sufficient 
accuracy by regarding the motion as irrotational. The computation of the drag D on 
a sphere in potential flow using the dissipation method seems to have been given first 
by Bateman in 1932 (see Dryden, Murnaghan & Bateman 1956) and repeated by 
Ackeret (1952). They found that D = 12nupU where ,u is the viscosity, u the radius of 
the sphere and U its velocity. This drag is twice the Stokes drag and is in better 
agreement with the measured drag for Reynolds numbers in excess of about 8. 

The same calculation for a rising spherical gas bubble was given by Levich (1949). 
Measured values of the drag on spherical gas bubbles are close to 12nupUfor Reynolds 
numbers larger than about 20. The reasons for the success of the dissipation method 
in predicting the drag on gas bubbles have to do with the fact that vorticity is confined 
to thin layers and the contribution of this vorticity to the drag is smaller in the case of 
gas bubbles, where the shear traction rather than the relative velocity must vanish on 
the surface of the sphere. A good explanation was given by Levich (1962) and by 
Moore (1959, 1963); a convenient reference is Batchelor (1967). Brabston & Keller 
(1975) did a direct numerical simulation of the drag on a gas spherical bubble in 
steady ascent at terminal velocity U in a Newtonian fluid and found the same kind of 
agreement with experiments. In fact, the agreement between experiments and potential 
flow calculations using the dissipation method are fairly good for Reynolds numbers 
as small as 5 and improves (rather than deteriorates) as the Reynolds number increases. 

The idea that viscosity may act strongly in the regions in which vorticity is effectively 
zero appears to contradict explanations of boundary layers which have appeared 
repeatedly since Prandtl. For example, Glauert (1943) say (p. 142) that 

. . .Prandtl's conception of the problem is that the effect of the viscosity is important only 
in a narrow boundary layer surrounding the surface of the body and that the viscosity 
may be ignored in the free fluid outside this layer. 



Potential flows of viscous and viscoelastic fluids 7 

According to Harper (1972), this view of boundary layers is correct for solid spheres 
but not for spherical bubbles. He says that 

For R 9 1, the theories of motion past solid spheres and tangentially stress-free bubbles 
are quite different. It is easy to see why this must be so. In either case vorticity must be 
generated at the surface because irrotational flow does not satisfy all the boufldary 
conditions. The vorticity remains within a boundary layer of thickness 6 = O(aR-T), for 
it is convected around the surface in a time t of order a /U,  during which viscosity can 
diffuse it away to a distance S if S2 = O(vt) = O(a2/R). But for a solid sphere the fluid 
velocity must change by O( U )  across the layer, because it vanishes on the sphere, whereas 
for a gas bubble the normal derivative of velocity must change by O(U/a)  in order 
that the shear stfess be zero. That implies that the velocity itself changes by 
O(US/a) = O(UR-5) = o ( U )  .... 

In the boundary layer on the bubble, therefore, the fluid velocity is only slightly 
perturbed from that of the irrotational flow, and velocity derivatives are of the same 
order as in the irrotational flow. Then the viscous dissipation integral has the same value 
as in the irrotational flow, to the first order, because the total volume of the boundary 
layer, of order a2S, is much less than the volume, of order a3, of the region in which the 
velocity derivatives are of order U/a.  The volume of the wake is not small, but the 
velocity derivatives in it are, and it contributes to the dissipation only in higher order 
terms ... . 

For flows in which the vorticity is confined to narrow layers the kinetic energy E 
should be well approximated by potential flow (even if the dissipation is not). Then 
using (3.8), (3.12) becomes 

In the problem of the rising bubble where the contributions from the flow inside the 
bubble cannot be neglected we get 

d E  dE, dE, 
dt dt +dr=laB - -- (u, - Tz - u, . Tl).n d S  

+ J g.x@,u,-p,u,).ndS-@(x,t),  (4.2) 
aB 

where the region 1 is inside the bubble and 2 is outside, n is the normal vector on the 
surface which points into the bubble and 

@(x, t) zf lB f[u,] : S[uJ d V+ lv,,, L[u,l: S[uJ d V 

is the total rate of energy dissipation. On the surface of the bubble the normal velocity 
and the shear stress are continuous; that is, 

(u,-u,).n= 0 on aB 

Since the bubble is neither rotating nor deforming, we can decompose the velocity as 
in (3.2) and (3.3). Then inserting (3.2) into (4.2), we find, after using a recent result of 
Hesla, Huang & Joseph (1933) which says the mean value of the jump of the traction 
vector vanishes on the closed surface of a drop 

and z.(T,-T,).n = 0 on aB for all zln. (4.3) 

/a,ex-(T,- T,).ndV= 0, (4-4) 
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(4.5) 
dE 
- = - U[& -p l )  V,l g ex + JaB (v, - T, - ul - T J . n  dS- @(x,  t). dt 

that 

Moreover, if v1 = v,, then, after applying (3.3) and (4.3), above equation reduces to 

(4.6) 
dE 
- = - U[(P,-pJ V,lg.e , -@(x,  9. dt 

Equation (4.6) can be used to form an unsteady extension of the drag formula 
introduced by Levich (1949). We first assume that the air bubble does not exert a shear 
traction on the liquid outside. This implies that a vorticity layer is required in the liquid 
to adjust the potential flow stress to its zero-shear-traction value on the free surface. 
This vorticity layer is much weaker than the layer required on a moving solid, or on 
a viscous bubble, in which the velocity of the potential flow rather than its derivative 
must be adjusted to its no-slip value. If the rate of energy dissipation in the bubble is 
neglected, then the kinetic energy of the gas becomes 

dE1 __ = p1 v, uu, 
dt 

where a/at  is denoted by a superposed dot, and 

@(x, t )  = f [u,] : S[U,] d V. JV,,, 
Applying these two equations to (4.6) and using (3.12) on the fluid region (region 2), 
we find that the drag induced by the flow outside the body is 

= @l-PZ> vB/Bg'ex-P1 vB u' 
This approximate formula for drag is independent of the constitutive equation of the 
fluid. 

5. Motion of a spherical gas bubble in a second-order fluid and a linear 
viscoelastic fluid using the dissipation method 

For a spherical bubble of radius a moving with speed U through a viscous fluid the 
flow outside the boundary layer and a narrow wake is given approximately by potential 
flow 

u a3 = -__  r2 cos 8. 

We can assume that this approximation is valid for a second-order fluid, where 

S = ,uA+u, B+u,A2, (5.2) 

def 
with B = A = aA/at+(u-V)A +Af +f TA, and y? = :/&' and see where it leads. To 
complete the unsteady drag formula (4.1), we need L and S. In spherical coordinates 
( r ,  8,cp), denoting the extra stress as 

s p r  SPB s,, 
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and using (5.1), we find 

2cos8 sin8 

0 -cos8 

a3 (-12c;'8+4 -8cosOsin8 

r5 
+3a, u2- -8cos8sin8 7cos28-3 

0 5 ~ 0 ~ ~ 8 - I  

/15 C O S ~ ~ +  5 5 cos Hsin 8 o \  
3 - 5 ~ 0 ~ ~ 6 '  

2 0 

' I -os28 - 1 t L  

0 9 1  
\ 

a6 ( 3  cos; + 1 cos 8 sin 8 

r8 
+9a2 V- cosOsin8 1 

0 cos2 8 

The pressure can be derived from the Bernoulli equation (2.5) as 

a3 
4r3 

(1 - 3 COS2 8) +-(I + 3 COS2 8) 
paUa3 
2 at r2 

p = ----c 

We may also write the dissipation integral as 

1 
L[V$] :S[V$] dV = ?JV A :[PA +a, g] dV+k I V A  : [a,(u- V) A + (a, +a,) A2] d V, 

where d V = 2nr2 sin 6'dO dr, 0 < 8 < n. The last integral vanishes after integrating 
over 8. Noting next that 

where U = aU/at, we find than 

i3A U 
- = Z A ,  
at 

Substituting (5.3) into (4.1) with e = and V, = $ra3, we obtain 

D = na(:a2p+ 12a,) U +  1 2 n a p ~ .  (5.4) 
The main result of this section is (5.4). Since a,  is negative, we see that the elastic 

term has a different sign than the acceleration reaction (added mass) term. This then 
is yet another manifestation of the competition between elasticity and inertia. Elasticity 
will dominate when 

1 Sa, 
-~ 

p a 2  > 1. 
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In steady flow the drag on a spherical bubble rising in a second-order fluid is the 
same as that on a similar bubble rising in a viscous fluid at high Reynolds numbers, 
independent of the values of aI and a2. 

If a gas bubble rises through a linear viscoelastic fluid at velocity U(t)e ,  which is 
nearly steady, the induced flow will be a small perturbation of that for the steady case, 
and the extra stress is given by (see Joseph 1990, p. 168) 

(5 .5)  

where 

and G(s) = (q/h) e-'IA for the Maxwell model. If u = V$ is a potential flow now and in 
the past, then from ( 5 . 9 ,  0-S = V$ where 

$ = lrn G(t -7) V2q5(X, 7) d~ = 0, 

and we get the same Bernoulli equation as in inviscid or viscous potential flow with 

p = -p--pp.- I * I 2  + pg . x + C(t), 
at 2 (5.7) 

where C(t) is a constant of integration. Of course the pressure is not needed for the 
dissipation calculation. By (4.1) with e = i, V, = $nu3, and L = 14, we have 

$na3pU = D-- A:SdV 
2 x  

where S is given by (5.5) and 

Following now the procedure used for the second-order fluid, we find that 

D = $na3pU+ 12na 

Suppose that we present the history of u(x, T) ,  for 7 < t, as a Taylor series around 
the present value 7 = t. Then 

def def 
where p = lmG(t - -7)d7 and a, = - (t--)G(t-~)d7. (5.10) 
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Using (5.10), we can show that (5.8) reduces to (5.4) when U(T) is slowly varying but 
not necessarily slow. We again get the Levich drag D = 12nupU for steady flow. 

We intend to test the prediction that the rise velocity of bubbles in viscoelastic 
liquids, for modest rise velocities, is determined by a balance of weight and drag 

l2nap U = $na3pg 

where p is the density of the liquid and g is gravity, independent of any viscoelastic 
parameter. High-frequency back and forth motions of spherical bubbles in viscoelastic 
liquids might be well described by (5.8). 

6. Potential vortex solutions which satisfy non-slip conditions 
The flow of a viscous fluid, which is at rest at infinity, outside a long cylinder of 

radius a rotating with a steady angular velocity w is an exact realization of viscous 
potential flow valid even when the viscosity ,u is very large. The exact solution of this 
problem is given by 

wa2 
u = - e  

r '  

and it is a potential flow solution of the Navier-Stokes equations with a circulation 

r = - 27ca2w (6.2) 

which satisfies the no-slip condition. The viscosity enters this problem through the 
couple 

required to turn the cylinder. 
The same solution (6.1) for the potential vortex holds for a second-order fluid (see 

Joseph 1990, p. 489) and for a linear viscoelastic fluid with U = 0 in the steady case. 
Deiber & Schowalter (1992) have shown how the potential vortex flow (6.1) might be 
used as a prototype for predictions of polymer behaviour in unsteady and turbulent 
flow. They point out that it is the rotation of the principal axis of stretch as one follows 
a fluid particle in its circular orbit that distinguishes this flow from the pure stretching 
flows familiar to polymer rheologists. Unfortunately, the potential vortex is not likely 
to exist in a class of deformations more severe than ones for which a second-order 
approximation is valid (see $8). 

Joseph & Fosdick (1973) gave a theory of rod climbing based on a retarded motion 
expansion of the stress for small w .  At first order they get (6.1), (6.2) and (6.3). If the 
fluid is neutrally wetting with a flat horizontal contact at the rod, the motion vanishes 
at second order and the climb can be computed from the normal stress balance at 
second order. The same solution can be obtained by assuming that the flow is a 
potential vortex solution of a second-order fluid. 

M = 2 p  (6.3) 

7. Force and moment on a two-dimensional body in the flow of a viscous 
fluid, a second-order fluid and a linear viscoelastic fluid 

The main results concerning force and moment of a two-dimensional body in the 
potential flow of an ideal fluid can be obtained from the Blasius integral formulae. 
These formulae have been extended to viscous potential flow by Joseph, Liao & Hu 
(1993). Here we are seeking a different extension to viscoelastic potential flow of a 
second-order fluid which contains the viscous fluid as a special case. 
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FIGURE 1. In two-dimensional space an arbitrary body B is enclosed by a two-dimensional control 
volume Q with outer boundary C and inner boundary aB. Here X and Y are the components of the 
force exerted by the fluid on the body and M is the hydrodynamic couple. e, and e,, are the base 
vectors in a Cartesian coordinate system with origin o inside the body such that at infinity the flow 
velocity is u = Ue,. 

Let 

and 

(7.1) 
def 

Xe,+ Ye, = f i e  TdZ = - n .  Tdl 6, 6, 
def 

x A ( f i e  Tdl) = - 
= i, 

def 
where fi  = - n  is the outward unit normal to the body, x = xe,+ye, is the position 
vector from the origin 0, X and Y are forces on the body, and M is the moment about 

the origin 0.  The velocity of the flow is given by u = ue,+ue,. Using the two- 
dimensional control volume 0 in figure 1, the balance of momentum and balance of 
angular momentum can be expressed as 

def 

and 

px A u d S  = x A ( n .  7')dZ- px A [u(u.n)]dZ+ px AgdS, (7.4) 

where 8 0  = CU aB. Using (3.1) and (2.5) with $ = :By2, and applying (7.1) and (7.2), 
we find that (7.3) and (7.4) can be written as 

i, s, ss, 

and 

where 

Xe,+ Ye, = X,e,+ Y,e,,+ n.Sdl-  p-ndl k k "? 
fc (Bg) x A n dl, 

(7.5) 
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M I  = $c (p  y-  C(t)) x A n dl- $c px A u(u. n)  dl 

+faBp:xAfidl- p(g.x)xnridl. (7.8) 6, 
We have used the condition u . n  = 0 on (3B to eliminate integrals 

pu(u.n) dl and px A u(u.n) dl. i, 
Notice that the last integrals in (7.7) and (7.8) can also be written as 

where 

is the mass of fluid per unit length displaced by the body and 

def 1 
x,, = - / J B  px dS. 

MlJ 

Substituting S from (5.2) and using the relations 

n d l =  (n,e,+n,e,)dl= dye,-dxe, on C,  

fi  dl = (fixex + fi, e,) dl = dy ex - d xe, on (3B, 

and the fact that the velocity potential q5 satisfies Laplace's equation, we find using the 
definitions of B and y2, that (7.5) and (7.6) can be written as 

X-iY = X1-i&-2ip - dz-2ia1 

Also, (7.7) and (7.8) become 

(7.13) 
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and (7.14) 

where W = u - iv is the complex velocity, an analytic function of the complex variable 
z = x+iy and the overbar denotes a complex conjugate. Equations (7.13) and (7.14) 
are the classical Blasius integral formulae for the flow of an ideal fluid. Equations (7.1 1) 
and (7.12) are the generalized formulae for the flow of a second-order fluid. 

Since we can always choose a coordinate system such that the flow has u = Ue, at 
infinity, the far-field form of the potential F(z) for flow past a finite body of arbitrary 
shape is given by 

m + i f  co a,+ib, F(2) = zu+- lnz+ ~ 

2.n &=I Zk ' 
(7.15) 

where the f is the circulation, which is positive if clockwise, m is the volume flux across 
the boundary of the cylinder, which vanishes for a solid body, and a,, b, are real time- 
dependent constants which are determined by the shape of the body. The complex form 
of the velocity at far field is then given by 

d F  m + i T  co a,+ib, 
w=-= u+-- c k 7 .  dz 2xz k = l  

Inserting (7.9), (7.10), (7.13) and (7.14) into both (7.11) and (7.12) and letting the 
outer boundary C approach infinity, we obtain, in view of the asymptotic behaviour 
of w, 

Xe,+ Yey = XIe,+  YIeY = -pmUe,+pTUe,,+ p,Adl-M,g (7.16) f, :y 
(7.17) 

ar and M=Mr+2pf+2u, - - ,  
a t  

where 

The viscoelastic properties of the fluid do not enter into the expression (7.16) for the 
forces. The parameter u2 of the second-order fluid does not enter into the expression 
(7.17) for the moment and 2a1W/at vanishes in steady flow. The forces and moment 
on an arbitrary simply connected body in two-dimensional steady potential flow of a 
second-order fluid are the same as in potential flow of a viscous fluid with viscosity p. 
Moreover, (7.17) shows that there is moment M = 2 p f  +2a, W / a t  even without a 
stream. Particularly, in this case if the circulation also does not depend on t ,  we recover 
(6.3). 

After carrying out calculations similar to the ones above using the two dimensional 
form of the extra stress (5.5) and the Bernoulli equation (5.7), we find that the force on 
a two-dimensional body in the flow of a linear viscoelastic fluid is 

and the moment is given by 

M =  M I + R e { 2 ~ m [ G ( t - i ) f c ( z ~ d z ] d ~ }  
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The far-field potential (7.15) holds here and shows that X-iY = XI-iYI and 

M = MI + 2 lm [G(t- T )  T(T)] d7. 

Again, (7.18) reduces to (7.17) when T i s  slowly varying, in view of (5.10). 

(7.18) 

8. Special potential flow solutions of models like Maxwell's 
Most models of a viscoelastic fluid will not admit a Bernoulli equation in general. 

But there are certain potential flows that satisfy the required conditions even for 
models that do not generally have a Bernoulli equation. For example, uniform flow is 
a potential flow solution for every model. So too is any motion for which V - S  = 0, say 
S is independent of x, as in extensional flow. A less trivial example, the potential 
vortex, is more representative. Among all of the interpolated Maxwell models, only the 
upper convected model (UCM) and lower convected model (LCM) can support a 
potential vortex. The existence of a potential flow solution is a precise mathematical 
problem equivalent to an examination of the conditions for the existence of solutions 
to an over-determined problem. We can formulate this problem as follows. The six 
stress equations in the six components of the extra stress S can generally be solved 
when the flow is prescribed; that is, for each and every potential flow. The 
compatibility condition for potential flow (2.3), V A (0 -S )  = 0, gives rise to three extra 
equations for the six components of the stress so that we have three equations too 
many. In two dimensions we find four equations for three unknowns. When this over- 
determined system of equations allows a solution, we may solve (2.4) for 1c. and the 
pressure is then given by (2.5), p = - p  a$/at-p 1$12/2 + @+ C(t). 

Potential vortex and sink flow are used to illustrate the concept. And the constitutive 
equations considered in this section are of the form 

l + a  1 -a +fTS) +SF = 27D, (8.1) 

where - 1 < a < 1 and F = / (the unit tensor) for the interpolated Maxwell model, 
F = /+ (ah/y) S for the Giesekus model and F = [ 1 +  ( e h / y )  tr S] / for the Phan-Thien 
and Tanner model, where ct and e are constants. It is convenient to study vortex and 
sink flow in a plane polar coordinate system. The stress dyad then takes the form 

[: ;I. S = d@ f + ~ f Q  d + ~ d @  i+@@ d = 

For plane potential flows, (2.3) and (8 .1)  may be expressed in component form as 



16 D. D. Joseph and T.  Y. Liao 

f, f ,  f, 
Interpolated Maxwell ff 7 Y 

Phan-Thien & Tanner n+-( f f+y)n 7 + (ff + 7) 7 

7 + - (ff + y)  7 

Models 

e 
Y +; (r + r) Y G G 

Lx a a 
y +- (yZ+ T2)  

G G 
Giesekus ff +- ( f f2  + 72) 

G 

TABLE I. f r ,  f ,  and f, for different models 

def 
where G = q/h, and g = ag/at. To distinguish between different modelsf,,f,, and f y  are 
assigned according to Table 1 .  

Consider the potential vortex, $(e) = be, where b = wri,  o is a constant angular 
velocity, and wrf / r  is the velocity (in circles). For steady, axisymmetric flow, (8.2) 
reduces to 

f , + 2 ( a - W  r = 0, 
r,,,+;r,, = 0, r2 

- 
h 

3 

r = 0. 
f ,  ( a + l ) b  (a-1)b  2Gb f 2 (a+l)b  
h r2 r -+- r+---y-y=--p f +  r2 r = 0. 
f ,  ( a + l ) b  (a-1)b  2Gb f 2 (a+l)b  
h r2 r 
-+- r+---y-y=--p f +  r2 

A solution of (8.3) for the interpolated Maxwell model is given by 

2Gbh 
r2 - 4(a2 - 1) b2hzr-" 

- 2(a + 1 )  bh 
r = -  Y =  r2 7, 

where C, and C,, are constants. Equating the first and third equations of (8.4), we get 

(2Gbh + C,) - 4C,(a2 - 1 )  b2hr-4 + C, r2 - 4C,(a2 - 1 )  b2hr-2 = 0. (8.5) 

Since (8.5) is true for all r > r,, the coefficients of different powers of r must vanish; this 
implies C, = 0, C, = -2Gbh and a'- 1 = 0. Thus, solutions exist only when a = 1 or 
- 1 .  When a = 1 (UCM), we have 

2Gh2b2 -' 1 and +=-. S = [ :  ; ]=2G$[  -1 4hb/r2 r4 

When a = - l (LCM),  we have 

If the Phan-Thien & Tanner model is adopted, we find that 

1 -(a + O I  1)/(2e) 

for r = 0. However, this is a strange potential vortex without 

S = G [ - 1 + ( a - 1 ) / ( 2 e )  
0 

r4 ' 

torque and constant 
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normal stresses. It does not appear to be physically acceptable. When T =I= 0, we find 
that extra stress is 

This solution rules out the case when a = 1 or - 1. We also have 

(r4 + 32aeb2h2)i dr] . 
[log ( r )  f 1 r3 

-G 1 G 11. = ~ [ 1 f - (r4 + 32ueb2h2)i] - 2(1+a) r2 2( 1 - 2 )  

The Giesekus model admits solutions only when T = 0, which is unrealistic, and the 
FENE-P model does not even produce a solution (see Joseph & Liao 1993). Potential 
vortex solutions of Maxwell models are possible only for the upper and lower 
convected models. The Giesekus and Phan-Thien & Tanner models replace the linear 
term S / h  with a nonlinear term, chosen so as to avoid unpleasant singularities and 
other maladies in the fluid response. The potential vortex solutions of these nonlinear 
models are not unique. One of the two solutions is unphysical and the others requires 
non-generic relations among the material parameters if the solution exists. 

We next examine the possibility of superposing a potential vortex and sink, confining 
our study to the interpolated Maxwell model. Since (2.3) and the constitutive equations 
are nonlinear, the superposition of two potential flow solutions is not automatically a 
solution. Consider the superposition of the potential vortex and the sink flow with 
potential 4 = mlog(r) and a constant strength m. Under the assumption that the 
components of stress only depend on r ,  we find that the solutions exist only when T =k 0 
and either a = 1 (UCM) or a = - 1 (LCM). When a = 1, the solution is 

2Ghm 
0 - Y  -- 

- 2Ghb 
T = -  

r2 ’ r2 ’ 

C, r2 2Ghb2 G(b2 + m2) r2 Ei [r2/(2mh)] 
exp [r2/(2mh)] mr2 m2 and Y =  

In this case, we have 

Gh(m2 + b2) G(b2 + m2) 
@ = -  mr2 +log[rl m2 

mh r Ei [r2/(2mh)] 
dr, 

exp [r2/(2m41 

where C, is a constant and Ei[z] is an exponential integral function defined by 

Ei[z]Ef - 1 I q d t .  

When a = - 1, the solution is 

- 2Ghb 2Ghm 
2 y = y z  T=- 

r2 

2Ghb2 G(b2 + m2) r2 Ei [r2/(2mh)] 
-~ 

C, r2 
+ m2 exp [r2/(2rnh)] my2 

and 0-= 
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Here, we also have 

+ mn) 
r2-mh 

where C, is a constant. Equations between (8.6) and (8.7) define potential flow fields 
that are generated by a superposed sink and potential vortex. 

We turn next to three dimensions and give a solution for the components of the extra 
stress in the interpolated Maxwell model for sink flow, 4 = m/r, using (2.3) and (8.1) 
with F = / (such solutions are incompletely discussed by Joseph 1990). In this case, we 
have a system of nine equations for the six components of the extra stress 

S =  Srrr"@r"+S, ,8Q8+S 6 0 9  
W" + s,,(r" o e+ 8 o r^) + s+(8 o Q+ Q o 8) + s rp  o $+# o 4 

in spherical coordinates (r,  0,cp). Since the flow is symmetric and steady, this system 
gives rise to a solution of the form 

s,, = Srp = s, = 0, 

Srr = r-4a exp [r3/(3hm)] (4G lrffl r(-1+4a) exp [ - r3/(3hm)] dr + Cl}, 

and S,, = S,, = - r2a exp [r3/(3hm)] { 2G Ira r(-1-2a) exp [ - r3/(3hm)] dr + C, 

where C, and C, are constants. We also find 

II. = C, r-4a exp [r3/(3hm)] -2C, lrffl r-4a-1 exp [r3/(3hm)] dr 

- 2C2 s" 
+ 4Gr-4a exp [r3/(3hm)] 1: r(-lf4@ exp [ - r3/(3hm)] dr 

exp [r3/(3hm)] dr 
r 

- 8G s" { r-4a-1 exp [r3/(3hm)] s ( - ~ + ~ ~ )  exp [ -s3/(3hm)] ds} dr 
r r 

- 4 G r  { r2a-1 exp [r3/(3hm)] 
r r 

Above formulae define the fields generated by a sink (or source) flow of an interpolated 
Maxwell model in three dimensions. In each case discussed above, the pressure can be 
easily derived from (2.5). 

9. Discussion 
The theory of potential flows of an inviscid fluid can be readily extended to a theory 

of potential flow of viscoelastic fluids which admit a pressure (Bernoulli) function. We 
have developed some of this theory for Newtonian fluids, linearly viscoelastic fluids 
and second-order fluids. The unsteady drag on a body in a potential flow is 
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independent of the viscosity and of the viscoelastic parameters for the models studied. 
However, there are additional viscous and unsteady viscoelastic moments associated 
with circulation in planar motions. These additional moments could play a role in the 
dynamics of flow in doubly connected regions of three-dimensional space, e.g. in the 
dynamics of vortex rings. It is evident that the various vorticity and circulation 
theorems which are at the foundation of the theory of inviscid potential flow hold also 
when the viscosity and model viscoelastic parameters are not zero. In addition, the 
theory of viscous and viscoelastic potential flow admits approximations to real flows 
through the use of dissipation and vorticity layer methods in three-dimensional space. 
For example, the dissipation theory predicts that the drag on a rising spherical gas 
bubble in a viscoelastic fluid is the same as the (Levich) drag on this bubble in a viscous 
fluid with the same viscosity and density when the rise velocity is steady but not when 
it is unsteady. The pressure on solid bodies and bubbles in viscous liquids is well 
approximated by potential flow when separation is suppressed even when, as for the 
solid body, the drag is determined by the dissipation in the viscous vorticity layer at 
the boundary. It is therefore not unreasonable to hope that the shapes of gas bubbles 
rising in viscoelastic fluids at moderate and perhaps moderately large speeds can be 
predicted from forces associated with viscoelastic potential flows. 

Concepts from the theory of viscous and viscoelastic potential flow have something 
to say about the phenomenon of vortex inhibition. Gordon & Balakrishnan (1972) 
report that ‘ ... remarkably small quantities of certain high molecular weight polymers 
inhibit the tendency of water to form a vortex, as it drains from a large tank ...’ and 
they discuss the phenomenon from a molecular point of view, noting that the same 
high-molecular-weight polymers that are effective drag reducers also work to inhibit 
the ‘bathtub’ vortex. The ‘bathtub’ vortex for an inviscid fluid is frequently modelled 
by superposing a potential vortex and a sink subject to the condition that the pressure 
at the unknown position of the free surface is atmospheric. In more sophisticated 
models account is taken of the fact that the vortex core does not reduce its diameter 
indefinitely, but tends to a constant value obtained by superposing a potential vortex 
and a uniform axial motion subject to the same pressure condition. This asymptotic 
regime is in the long straight part of the vortex tube near the drain hole shown in the 
sketch of figure 1 of Gordon & Balakrishnan (1972) and in the first panel of the 
photograph of the same experiment shown as figure 2.5-11 in Bird, Armstrong & 
Hassager (1987). We can imagine an exact harmonic function that satisfies all the 
asymptotic that which we have listed and is such that the pressure in the Bernoulli 
equation is atmospheric at the free surface z = h(r). Exactly the same solution satisfies 
the equations for viscous potential flow with the added caveat that the vanishing of the 
shear stress at the free surface cannot be satisfied by viscous potential flow. However, 
the ‘Levich type’ vorticity layer which would develop at the free surface to 
accommodate this missing condition can be expected to be weak in the sense that its 
relative strength in an energy balance as well as its thickness will decrease as the 
Reynolds number increases. 

Obviously the aforementioned modelling fails dismally for most models and for 
some of the currently most popular models of a viscoelastic fluid and if we thank that 
the dilute solutions used in the experiments of Gordon & Balakrishnan (1972) are 
viscoelastic, then we should expect vortex inhibition even without the molecular 
arguments. Indeed, molecular ideas seem to involve the idea of strong extensional flow, 
but the steady vortex that drains from the hole is perhaps modelled by the 
superposition of a potential vortex and a uniform axial flow which has no extensional 
component whatever. 



20 D. D. Joseph and T. Y. Liao 

The polymeric solutions used in the vortex inhibition experiments are in the same 
range of extreme dilution, say 10p.p.m. as in experiments on drag reduction (see 
Berman 1978 for a review) or the anomalous transport of heat and mass in the flow 
across wires (see Joseph 1990 for a review). It is apparent that in spite of the fact that 
the aqueous polymeric liquids used in these experiments have surpassingly small weight 
fractions, they are responding like viscoelastic liquids. In fact the usual ideas like those 
of Rouse and his followers do not work since the drag reduction is never linear in the 
concentration, no matter how small (see Berman 1978, p. 56). 

The theory of rod climbing is based on the potential vortex at the lowest order in an 
expansion in which the second-order fluid is the first non-trivial approximation to the 
stress for slow motions. This theory shows that for small r < (41/p);, where 1 = hy 
is the climbing constant for Maxwell models, the effect of normal stresses is to cause 
the free surface to rise rather than sink. For aqueous drag reducers we may guess that 
y M lop2, h M 2 x lop3 (Joseph 1990) so that in the region r < 10-1 mm the vortex 
inhibition is suppressed by normal stresses. 

Our analysis has led us to definite conclusions about potential flows of viscous and 
viscoelastic fluids. Some special fluids, like inviscid, viscous, linear viscoelastic and 
second-order fluids, admit potential flow generally and give rise to Bernoulli functions. 
Other fluids will not admit potential flows unless the compatibility condition (2.3) is 
satisfied. This leads to an over-determined system of equations for the components of 
the stress. Special potential flow solutions, like uniform flow and simple extension, 
satisfy these extra conditions automatically and other special solutions can satisfy the 
equations for some models and not for others. It appears that only very simple 
potential flows are admissible for general models. This lack of general admissibility 
greatly complicates the study of boundary layers for viscoelastic liquids. 

This work was supported by the NSF, fluid, particulate and hydraulic systems; by 
the ARO, Mathematics; by AHPCRC; by the DOE, Department of Basic Energy 
Sciences; and by the University of Minnesota. We gratefully acknowledge Todd Hesla 
for his many valuable comments and helpful review of the manuscript. 

Appendix. Momentum, circulation, and vorticity equations for a second- 
order fluid 

The constitutive equation of a second-order fluid is 

S =,uA+a,B+a2A2, (A 1) 

where A = f + f is twice the rate-of-strain tensor D which is the symmetric part of the 

velocity-gradient tensor f = Vu; B = A = aA/at +(u.V)A+Af + f T A  is the lower 
convected invariant derivative of A ;  ,u is the zero-shear viscosity; a1 = -n1/2 and 
a2 = n, + n,, where ni = lim N$(K)/K' for i = 1 and 2 are constants obtained from the 

first and second normal stress differences. It can be shown that (see Joseph & Liao 
1993) 

def A 

K + O  

V - S  = p V 2 ~ + ~ 1  + ( c I ~ + c ~ , ) [ A * ( V ~ U ) + V ~ ~ ~ A ] + - V ~ ~ ,  1 (A 2) 
2 

def 
where 1 = 3a1 + 2a, is the climbing constant, y2 = f tr (A'), and l2 = L - L T  = - 6 . 0  
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rlef 
where E is the alternating unit tensor and w = V A u is the vorticity. From (A 2) it 
follows that the momentum equation for a second-order fluid can be written as 

B 
(A 3 )  

a, + a,) [A. (V") + V Q  .A] + - vy2  . 
2 

du dV2u 
p z  = - v p +  pv2u + pg + a1 Lai + LT . (VZu 

For potential flow, u = V $ ,  V2u and Q vanish and du/dt = V(a$/at + lu12/2), so that 
(A3) may be written as 

Hence 

1 v p+p-+p---y2-pg.x a$ IUl2 B = 0. [ at 2 2  

= -p--pl a$ * I 2  +-y2 B +pg.  x + C(t). 
a t  2 2 

Lumley (1972) derived a Bernoulli equation for a dilute polymer solution on the 
centreline of an axisymmetric contraction. He notes that 

Recent measurements of cavitation in dilute polymer solutions indicate that observed 
differences from cavitation in Newtonian media may be due to local pressure differences 
resulting from the non-Newtonian constitutive relation governing these dilute solutions. 
No convenient means of estimating the departure of the pressure from the Newtonian 
(inertial) value presently exists, and, of course, no general expression is possible.. . . 

Inserting (A 1) and (A 4) into the equation, T = - p / + S ,  we obtain, using index 
notation, that 

where 
T.. = q. . -pg .xs . .  21 9 

21 

is the active dynamic stress. 
Some criticisms of the notion of extensional viscosity follow easily from this analysis. 

The potential flow of a fluid near a point (q, x,, x3) = (O,O, 0) of stagnation is a purely 
extensional motion with 

US 
[Ul,  u2, u31 = ~ P X l ,  -&, -x31, L 

where S is the dimensionless rate of stretching. In this case, 

1 .  
0 0 0 

0 =2pt U S [ ;  0 -1  0 1  0 + 2  (?)Z - [-110+2a2 - 7a1 - 4a2 
0 -1  0 0 - 7a, - 4a, 

At the stagnation point the extensional stress is 

US 
q 1 1  = - p  2 U2+4p-+2(2a2-al) L 
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and the extensional stress difference is 
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where ij = 3,u + 6(a1 +a,) ( U / L )  S is the extensional viscosity of a second-order fluid. 
Since 2a, - a, = in ,  + n, > 0 and a, + a, = fn, + n, > 0, both the normal stress term in 
(A !) and the normal stress difference term in (A 6) are positive independent of the sign 
of S.  From (A 5 )  it follows that inertia and normal stresses are in competition. But you 
cannot see the effects of inertia in the formula (A 6) for the normal stress difference. 
Certainly this formula, or the associated extensional viscosity, could not be used to 
assess the force on bodies. 

Let r = $ u .  dl be the circulation and suppose that pg is derivable from a potential, 
as is true when g is gravity. Then, using (A 3) and V2u = - V A o, we obtain the 
circulation equation : 

def 

a, d(Vr\o) dr = -$($ (V A o) +- [ dt + L T . ( V  A o)]).dl 
dt P 

[ - A  .(V A O) + VQ. Al-dl. (A 7) 

On the other hand, after taking curl of (A 3) and replacing V2u by -V A o, we 
obtain the vorticity equation : 

+ + a2) V A [-A. (V A w )  + VQ. A]. (A 8) 
P 

When a, and a, are zero, (A 7) and (A 8) reduce to 

- d T  = -ffiVAw)-dl and - dw = w.Vu+-V20. lu 
dt p dt P 

These equations govern the circulation and vorticity in a Newtonian fluid (see 
Batchelor 1967, pp. 267, 269). When o = 0, 

d o  
- = 0  and - = O .  
d T  
dt dt 

This leads to the classical vorticity theorems, Kelvin's circulation theorem and the 
Cauchy-Lagrange theorem. The same conclusions (A 9) hold when o = 0, and r and 
o satisfy the vorticity equations (A 7) and (A 8) for a second-order fluid. It follows that 
the classical theorems of vorticity hold for potential flow of a second-order fluid 
independent of the values of the material parameters p, a1 and a,. Thus, the discussion 
of potential flow in no way requires us to turn to the theory of ideal fluids. 

Since the boundary conditions at a solid or free surface cannot generally be satisfied 
by potential flow, potential flow cannot hold up to the boundary and at the very least 
a vorticity boundary layer will be required. Outside this boundary layer we get 
potential flow but the viscous and viscoelastic stresses are not zero. In the case of 
viscous fluids with a, = a, = 0, viscosity may or may not be important outside the 
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vorticity layer. For solid bodies the dissipation in the vorticity layer will dominate the 
drag and the viscous stresses in the exterior potential flow will be negligible at high 
Reynolds numbers. But for rising bubbles where the vorticity layer is weak the viscous 
stresses in the exterior potential flow will dominate the drag and the dissipation of the 
vorticity layer will be negligible at high Reynolds numbers. We cannot hope that a 
similar result will hold for a second-order fluid. 
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